Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 94(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38099836

RESUMO

We report on the design and characterization of a compact microwave antenna for atomic and molecular physics experiments. The antenna is comprised of four loop antennas arranged in a cloverleaf shape, allowing for precise adjustment of polarization by tuning the relative phase of the loops. We optimize the antenna for left-circularly polarized microwaves at 3.5 GHz and characterize its near-field performance using ultracold NaCs molecules as a precise quantum sensor. Observing an unusually high Rabi frequency of 2π × 46.1(2) MHz, we extract an electric field amplitude of 33(2) V/cm at 22 mm distance from the antenna. The polarization ellipticity is 2.3(4)°, corresponding to a 24 dB suppression of right-circular polarization. The cloverleaf antenna is planar and provides large optical access, making it highly suitable for quantum control of atoms and molecules and potentially other quantum systems that operate in the microwave regime.

2.
J Phys Chem A ; 127(39): 8194-8199, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37738380

RESUMO

We report on a cycling scheme for Doppler cooling of trapped OH+ ions using transitions between the electronic ground state X3Σ- and the first excited triplet state A3Π. We have identified relevant transitions for photon cycling and repumping, have found that coupling into other electronic states is strongly suppressed, and have calculated the number of photon scatterings required to cool OH+ to a temperature where Raman sideband cooling can take over. In contrast to the standard approach, where molecular ions are sympathetically cooled, our scheme does not require co-trapping of another species and opens the door to the creation of pure samples of cold molecular ions with potential applications in quantum information, quantum chemistry, and astrochemistry. The laser cooling scheme identified for OH+ is efficient despite the absence of near-diagonal Franck-Condon factors, suggesting that broader classes of molecules and molecular ions are amenable to laser cooling than commonly assumed.

3.
Phys Rev Lett ; 130(11): 113002, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-37001095

RESUMO

We report on the creation of bosonic NaCs molecules in their absolute rovibrational ground state via stimulated Raman adiabatic passage. We create ultracold gases with up to 22 000 dipolar NaCs molecules at a temperature of 300(50) nK and a peak density of 1.0(4)×10^{12} cm^{-3}. We demonstrate comprehensive quantum state control by preparing the molecules in a specific electronic, vibrational, rotational, and hyperfine state. We measure the ground state ac polarizability at 1064 nm along with the two-body loss rate, which we find to be universal. Employing the tunability and strength of the permanent electric dipole moment of NaCs, we induce dipole moments of up to 2.6 D at a dc electric field of 2.1(2) kV/cm and demonstrate strong microwave coupling between the two lowest rotational states with a Rabi frequency of 2π×45 MHz. A large electric dipole moment, accessible at relatively small electric fields, makes ultracold gases of NaCs molecules well suited for the exploration of strongly interacting phases of dipolar quantum matter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...